
ARx_Cmd.ag

ARx_Cmd.ag ii

COLLABORATORS

TITLE :

ARx_Cmd.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY April 17, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_Cmd.ag iii

Contents

1 ARx_Cmd.ag 1

1.1 ARexxGuide | Command utilities . 1

1.2 ARexxGuide | Command utilities | ABOUT THIS SECTION . 2

1.3 ARexxGuide | Command utilities (1 of 11) | RexxMast . 2

1.4 ARexxGuide | Command utilities (2 of 11) | RXC -- Rexx Close . 3

1.5 ARexxGuide | Command utilities (3 of 11) | RX . 3

1.6 ARexxGuide | Command utilities (4 of 11) | HI -- Halt Interpretation . 4

1.7 ARexxGuide | Command utilities (5 of 11) | RXLIB . 5

1.8 ARexxGuide | Command utilities (6 of 11) | RXSET . 6

1.9 ARexxGuide | Command utilities (7 of 11) | TCO -- Trace Console Open . 6

1.10 ARexxGuide | Command utilities (8 of 11) | TCC -- Trace Console Close . 7

1.11 ARexxGuide | Command utilities (9 of 11) | TS -- Trace Start . 7

1.12 ARexxGuide | Command utilities (10 of 11) | TE -- Trace End . 8

1.13 ARexxGuide | Command utilities (11 of 11) | WaitForPort . 8

1.14 ARexxGuide | Command utilities | Tools (1 of 2) | WShell . 9

1.15 ARexxGuide | Command utilities | Tools (2 of 2) | EXECIO . 10

ARx_Cmd.ag 1 / 11

Chapter 1

ARx_Cmd.ag

1.1 ARexxGuide | Command utilities

AN AMIGAGUIDE® TO ARexx Second edition (v2.0)
by Robin Evans

ARexx command reference:

About this section
AmigaDOS command programs:

RexxMast

RXC

RX

HI

RXLIB

RXSET

TCO

TCC

TS

TE

WaitForPort
Useful tools:

WShell

ExecIO
Copyright © 1993,1994 Robin Evans. All rights ←↩

reserved.

This guide is shareware . If you find it useful, please register.

ARx_Cmd.ag 2 / 11

1.2 ARexxGuide | Command utilities | ABOUT THIS SECTION

ARexx command utilities
~~~~~~~~~~~~~~~~~~~~~~~

The distribution copies of ARexx include several utility programs. These
are similar to other command utilities located in the C: directory. They
are called in the same way, by entering the command name on the shell or
using the ’Workbench/Execute command’ menu item.

On a standard Workbench disk, the ARexx utility programs are located in a
directory named ’rexxc’. There’s nothing special about that directory
name. The program files can be moved to whichever directory the user might
choose, but wherever they are located, the directory should be included
in the command path so that the command will be executed immediately.

The command path is controlled with the AmigaDOS command ’PATH’. Consult
your AmigaDOS manual for more information if you are not familiar with its
use.

The main difference between these commands and other command programs
located in C: is that the ARexx command utilities will not supply help
information when <command> ? is entered on the shell.

Next, Prev & Contents: Command utilities

1.3 ARexxGuide | Command utilities (1 of 11) | RexxMast

RexxMast

Launches the ARexx resident process. The RexxMast program (which is
located in the sys:System drawer of standard workbench disks) is the
·interpreter· which must be running on the system before an ARexx script
can be executed.

WAYS TO START REXXMAST
~~~~~~~~~~~~~~~~~~~~~~
To make ARexx available whenever needed, RexxMast should be started with a
command in one of the files that are automatically run when the computer
boots up. To do that, the icon for RexxMast can be placed in the WBStartup
drawer of the Workbench or the following line can be added to the file
s:user-startup.

rexxmast >nil:

It may be necessary to include the full path (’sys:system/rexxmast’, for
example) if the drawer in which the program is located has not been added
to the system’s command search path.

If it is not started as part of the startup sequence, RexxMast can be
started by double-clicking on its icon located in the sys:system directory.

ARx_Cmd.ag 3 / 11

A third alternative is to launch a script using the
RX
utility. That

command will start RexxMast if it is not available.

However it is started, RexxMast will continue to run in the background
until it is specifically halted with the

RXC
command.

1.4 ARexxGuide | Command utilities (2 of 11) | RXC -- Rexx Close

RXC

Closes the ARexx resident process. The REXX port is withdrawn immediately
upon execution of this command which means that no new ARexx programs may
be started.

The command will not halt the interpretation of currently executing
programs, however. They will continue as they normally would. The resident
process (which is started with

RexxMast
) will exit as soon as all ARexx

tasks that were executing when the command was issued have finished.

Once the RXC
Next: RX | Prev: Command utilities | Contents: Command utilities

1.5 ARexxGuide | Command utilities (3 of 11) | RX

RX <program> [<arguments>]

Launches an ARexx <program> from the AmigaDOS shell, or can be used as the
default tool for an icon that will launch the program.

Whether it is entered on the command line or used as the tool of an icon,
the RX utility will start

RexxMast
, the interpreter, if it is not

already available.

ARexx search path:
~~~~~~~~~~~~~~~~~~
If <program> includes an explicit path specification, then that path alone
is searched. If an extension (like .ed) is included, then that extension
alone is searched for.

If a path specification is not included, ARexx will first search the



ARx_Cmd.ag 4 / 11

current directory for <program> and then the REXX: directory. If an
extension is not included, it will first look in each directory for the
exact name as entered and then for a the specified name with the default
extension added.

If the script is launched from a shell or from a workbench icon, the
default extension will be .rexx. If it is launched as a macro from an
application, the default extension will be something determined by the
developer of that application. The extension used for macros in the Ed
text editor, for instance, is .ed.

The PARSE SOURCE instruction can be used to determine the default
extension for the current environment. The current default extension may be
excluded from the name of script when it is invoked.

This search method is used both for commands -- scripts launched with the
RX command -- and for external functions .

The following list shows the programs that would be launched if the current
directory is set to the value to the left of the ‘>’ sign:

Current dir Command Scripts that would be launched
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Work:> rx Foobar 1. Work:Foobar

2. Work:Foobar.rexx
3. rexx:Foobar
4 rexx:Foobar.rexx

Work:> rx scp/Foobar 1. Work:scp/Foobar
2. Work:scp/Foobar.rexx

Work:scp> rx Foobar.rexx 1. Work:scp/Foobar.rexx
2. rexx:Foobar.rexx

Work:> rx Foobar.oxt 1. Work:Foobar.oxt
2. rexx:Foobar.oxt

Next: HI | Prev: RXC | Contents: Command utilities

1.6 ARexxGuide | Command utilities (4 of 11) | HI -- Halt Interpretation

HI

Halts interpretation of all currently executing ARexx programs.

If a program has its halt trap enabled (with SIGNAL ON HALT), then the
appropriate subroutine will be called for the program. Otherwise the
program will terminate at the end of the currently executing clause.
Because it waits until the end of the current clause to stop a program, the
command will not immediately halt a program that is waiting for input with
PULL , WAITPKT() , or similar functions, instructions, or commands; but

will stop it only after the input request has been satisfied.

ARx_Cmd.ag 5 / 11

Next: RXLIB | Prev: RX | Contents: Command utilities

1.7 ARexxGuide | Command utilities (5 of 11) | RXLIB

RXLIB [<name> <priority> [offset, version]]

This command performs the same function as the built-in ARexx function
ADDLIB() , with one extension.

The <name> argument is case sensitive, but -- unlike its use in the
ADDLIB() function -- <name> should not be quoted when used with this DOS
command since the parsing of commands is done according to AmigaDOS
conventions, which would cause the opening quote to become part of the name
of the library. Names entered on the command line are not translated to
uppercase.

If a library is specified, it should be located in the LIBS: directory. If
a function host is specified, then <name>, which is still case-sensitive,
should refer to the public message port opened by the host.

<priority> is an integer between -100 and 100. It sets the search
priority used by the resident process in case of duplicate function names
in the Library List. A library with a higher priority is searched before
others. If the priority is the same, then libraries are searched in the
order they were added to the list.

<offset> and <version> are used only for function libraries. The numbers
to be used should be specified by the library’s developer.

Used without arguments, RXLIB will list the currently loaded libraries and
function hosts. Names are ordered on the list by the search priority
assigned to them.

Examples:
RXLIB rexxsupport.library 0 -30 0
RXLIB rexxreqtools.library 0 -30 37
RXLIB RexxDosSupport.library 0 -30 0
RXLIB rexxarplib.library 0 -30 0
RXLIB rexxmathlib.library 0 -30 0
RXLIB QuickSortPort
RXLIB

The last command might output:
rexxsupport.library (library)
rexxreqtools.library (library)
RexxDosSupport.library (library)
rexxarplib.library (library)
rexxmathlib.library (library)
QuickSortPort (host)
REXX (host)

Next: RXSET | Prev: HI | Contents: Command utilities

ARx_Cmd.ag 6 / 11

1.8 ARexxGuide | Command utilities (6 of 11) | RXSET

RXSET [<name> [[=] <value>]]

This command performs the same task as the built-in ARexx function
SETCLIP() , with one extension.

<name> may not include spaces and should not be enclosed in quotation
marks. The clip will be set using the exact case-sensitive characters used
as the first argument to the command.

When both <name> and <value> are specified, a clip of that case-sensitive
<name> will be created on the clip-list with <value> as its content.

If <name> is used without <value>, then any clip matching that <name> will
be removed from the list.

<value> can be any string that can be typed on the shell. The string can
be enclosed within double-quotation marks { " }, but does not have to be.
Since AmigaDOS parsing conventions are used with this command, single
quotation marks are not recognized as special characters and will be
included as part of the clip.

Entered without arguments, RXSET will list all currently defined clips
along with their values, but it will truncate the the values to 65
characters. The truncation happens on the display only. Strings on the
clip list can be up to 65535 characters in length.

Next: TCO | Prev: RXLIB | Contents: Command utilities

1.9 ARexxGuide | Command utilities (7 of 11) | TCO -- Trace Console Open

TCO

Opens the global tracing console -- a standard console window that can be
moved and resized by the user and will have all of the standard input
controls of the user-shell specified for the system.

Trace output generated by currently active ARexx scripts will be diverted
immediately to the tracing console.

The tracing output itself is controlled by the TRACE instruction, the
TRACE() function, or by the

TS
and
TE
commands.

If a trace request is issued when the trace console is not open, ARexx
will attempt to output the trace to a shell. Without the trace console,
however, ARexx will often have no place to send trace output from a macro
that was started within an application program.

The trace console is opened as the logical device ·STDERR·. An ARexx

ARx_Cmd.ag 7 / 11

script can send output to the window with this instruction:

CALL WRITELN STDERR, <output>

The same instruction can be used at any interactive trace prompt to view
the results of an expression on the trace console.

The instruction ‘PARSE EXTERNAL <template>’ will retrieve user input
from the trace console (or anything else defined as STDERR) rather than
the shell.

Also see Error codes

Tutorial Debugging a script

The output of a program trace is far more useful if a shell like
WShell

is used since the window’s scroll bars and scrolling keys make it ←↩
easy to

review the entire history of the trace.

Next: TCC | Prev: RXSET | Contents: Command utilities

1.10 ARexxGuide | Command utilities (8 of 11) | TCC -- Trace Console Close

TCC

Issues a close request to the global tracing console which is opened with
the

TCO
command. The window will actually close only after all currently

active tracing requests have been satisfied.

Next: TS | Prev: TCO | Contents: Command utilities

1.11 ARexxGuide | Command utilities (9 of 11) | TS -- Trace Start

TS

Starts an interactive trace of all currently executing ARexx programs.
The tracing mode is the same as that set when the instruction ‘TRACE ?R ’
is entered in a program.

If the trace console has been opened with the
TCO
command, the output of

the trace(s) will be diverted to that window.

This command is one way to gain control of a program that is performing in
an unexpected way -- one caught in an endless loop, for instance. Program

ARx_Cmd.ag 8 / 11

statments can be entered at any pause point to change the values of
variables, or even to halt just one of several programs by entering
Control-C at a pause point of the program to be halted. Other programs
will continue.

The instruction ‘TRACE OFF’ entered at any pause point will stop the trace
for the script or ·subroutine· being traced at that point. The TRACE()
function (with the ’Background’ or ’Off’ option) can be used within the
program code to suppress tracing of a script even when the global tracing
flag is set.

The command utility
TE
will remove the tracing flag set by TS.

Also see Error codes

Tutorial: Debugging a script

Next: TE | Prev: TCC | Contents: Command utilities

1.12 ARexxGuide | Command utilities (10 of 11) | TE -- Trace End

TE

Withdraws the tracing flag set by the
TS
command. A trace called by the

TS command will end after the current pause point in the program is
completed.

The TE command will not affect tracing that is called by the TRACE
instruction or the TRACE() function entered as part of the program code.

The command can be entered in the
trace console
at any ‘>+>’ prompt. If

the clause ‘address command TE’ is entered, the command will work in any
environment. One additional prompt is usually presented before the TE
command takes effect.

Next: WAITFORPORT | Prev: TS | Contents: Command utilities

1.13 ARexxGuide | Command utilities (11 of 11) | WaitForPort

WaitForPort <port>

Pauses 10 seconds or until the named <port> is available on the system. If
the port is not available after 10 seconds, the command will set a return
code (RC) of 5.

ARx_Cmd.ag 9 / 11

Applications that support ARexx open a port with a name specified by the
application’s developer. The port name should be detailed in the
documentation. Port names are case sensitive, so that ’TurboText1’ is not
the same name as ’TURBOTEXT1’. WaitForPort lets a script pause while a
program is loaded by the system since the port will not be added until the
application is ready to receive input.

The following fragment shows how the command is used to pause while the
terminal program VLT is loaded:

/**/
/* SHOW() can be used to check for the existence of a port */

if ~show(’P’, ’VLT’) then do
address command /* both RUN and WAITFORPORT are DOS commands.*/
’run >nil: vlt:VLT’

/*
The loop below assures that the program will wait at least 50
seconds for the port to open, but will exit as soon as the port
is available.

*/
do 5 while ~show(’P’, ’VLT’)

’waitforport VLT’
end
address /* toggle back to previous address */

/* The return code RC is set to 5 when WaitForPort times out **
** before the port is available. */

if rc = 5 then do
say ’Unable to load VLT’
exit

end
end

WaitForPort is not an ARexx command or function. It is a DOS command much
like ’list’ or ’cd’ and should be treated the same way in scripts. A
common error is to issue the command to the wrong environment. The
instruction ‘ADDRESS COMMAND ’ may have to be issued to assure that the
command is sent to AmigaDOS.

Next: Command utilities | Prev: TE | Contents: Command utilities

1.14 ARexxGuide | Command utilities | Tools (1 of 2) | WShell

WShell replacement shell
~~~~~~~~~~~~~~~~~~~~~~~~
WShell is a commercial program. It is not included with either the
standard OS or the commercial version of ARexx. It has a place here,
however, because it is a program specifically designed to make
use of ARexx on the Amiga easier for both programmer and user.

WShell was written and is supported by Bill Hawes (Wishful Thinking
Development Co.) who also wrote ARexx. The close relationship shows. The

RX
command utility is unneeded on WShell since the shell will launch



ARx_Cmd.ag 10 / 11

ARexx programs transparently, by just entering the program name (without
the .rexx extension) on the shell. There is no need to set the script bit
or anything else -- just type in the name and the script will run.

Scripts launched with WShell inherit an address that is significantly more
useful than the REXX address handed to scripts launched by

RX
. That

address is named WSH_# where # is the task number of the shell. The WSH
addresses act like a combination of the COMMAND port and the REXX port.
Within a script launched from WShell, it is rarely necessary to issue the
‘ADDRESS COMMAND’ instruction since the default address handles commands.

WShell windows include a scroll-bar and definable scrolling keys that make
reviewing the history of a traced program far easier.

The shell includes a number of other enhancements, including shell menus,
an extraordinarily powerful and configurable filename completion feature,
icon support, and more. It worthwhile for any shell user, but those who use
ARexx extensively should give it special consideration.

Next: EXECIO | Prev: Command utilities | Contents: Command utilities

1.15 ARexxGuide | Command utilities | Tools (2 of 2) | EXECIO

ExecIO
~~~~~~
A utility that, among other things, will redirect the output from OS
commands like ’list’ into the variable environment of an ARexx script. It
is not included with the OS releases or with the commercial version of
ARexx, but is included with

WShell
, which is required for its use.

The following simple example will transfer to the stem variable [ArxFN.]
the names of all files in the current directory that match the variable
[FilePat]. When the command returns, the variable [ArxFN.0] will hold
the number of files <n>; the variables [ArxFN.1] to [ArxFN.<n>] will
hold the actual file names.

’list quick nohead’ FilePat ’ | ExecIO stem ArxFN.’

That’s often useful but could easily be duplicated by other means. (The
function library rexxarplib, for instance, includes a function that will

do the same thing.) Some of the more arcane abilities of ExecIO are more
difficult to duplicate. The following command will read lines from the
file [FileName] and will assign to numbered branches of the stem [
Nodes.] only those lines that contain, in columns 1 to 5, the (non
case-sensitive) characters ’@node’.

’ExecIO read’ FileName ’stem Nodes. locate "@node" colend 5’

In the following complex command (the one-line command is spread over two
lines), ExecIO is used twice, first (at the end of the command) to

ARx_Cmd.ag 11 / 11

transfer to the variables [FileCmd.] a list of ExecIO read commands for
each of the files matching [FilePat]. The ’lformat’ option to ’list’ is
used to prepare a command matching that in the example above for each of
the matching files:

’list quick nohead’ FilePat ’lformat "ExecIO read %s stem Nodes.
locate *"@node*" colend 5" | ExecIO stem FileCmd.’

ExecIO history
~~~~~~~~~~~~~~

ExecIO is also useful for those who wish to investigate the variety of
REXX scripts written for other systems: A command of that name is used
widely in REXX programs written for the system on which the language was
born -- the CMS environment for IBM’S VM mainframe computers.

ExecIO is an OS command in CMS. It was (and is) used in REXX scripts on
that system because the original releases of the language did not include
other facilities for file I/O. (The file I/O functions used in ARexx are
system-specific extensions to the language.) Later versions of REXX
patched that hole in the language, (with instructions and functions
different than those used in ARexx, unfortunately), but not soon enough to
prevent ExecIO from gaining an established place in the language.

Most of the other computer systems to which REXX has been ported include
some version of ExecIO to maintain greater compatibility with the
thousands of scripts written for CMS. Thanks to Bill Hawes and WShell, the
Amiga is not an exception.

Next: Command utilities | Prev: WShell | Contents: Command utilities


	ARx_Cmd.ag
	ARexxGuide | Command utilities
	ARexxGuide | Command utilities | ABOUT THIS SECTION
	ARexxGuide | Command utilities (1 of 11) | RexxMast
	ARexxGuide | Command utilities (2 of 11) | RXC -- Rexx Close
	ARexxGuide | Command utilities (3 of 11) | RX
	ARexxGuide | Command utilities (4 of 11) | HI -- Halt Interpretation
	ARexxGuide | Command utilities (5 of 11) | RXLIB 
	ARexxGuide | Command utilities (6 of 11) | RXSET 
	ARexxGuide | Command utilities (7 of 11) | TCO -- Trace Console Open
	ARexxGuide | Command utilities (8 of 11) | TCC -- Trace Console Close
	ARexxGuide | Command utilities (9 of 11) | TS -- Trace Start
	ARexxGuide | Command utilities (10 of 11) | TE -- Trace End
	ARexxGuide | Command utilities (11 of 11) | WaitForPort 
	ARexxGuide | Command utilities | Tools (1 of 2) | WShell
	ARexxGuide | Command utilities | Tools (2 of 2) | EXECIO


